GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity.

نویسندگان

  • Hilal Zaid
  • Ilana Talior-Volodarsky
  • Costin Antonescu
  • Zhi Liu
  • Amira Klip
چکیده

Dietary glucose is taken up by skeletal muscle through GLUT4 (glucose transporter 4). We recently identified by MS proteins displaying insulin-dependent co-precipitation with Myc-tagged GLUT4 from L6 myotubes, including GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HKII (hexokinase-II). In the present paper we explored whether GAPDH and HKII interact directly with cytoplasmic regions of GLUT4 and their possible inter-relationship. Endogenous and recombinant GAPDH and HKII bound to a chimeric protein linearly encoding all three cytosolic domains of GLUT4 [GST (glutathione-transferase)-GLUT4-cyto]. Both proteins bound to a lesser extent the middle cytosolic loop but not individual N- or C-terminal domains of GLUT4. Purified GAPDH and HKII competed for binding to GST-GLUT4-cyto; ATP increased GAPDH binding and decreased HKII binding to this construct. The physiological significance of the GAPDH-GLUT4 interaction was explored by siRNA (small interfering RNA)-mediated GAPDH knockdown. Reducing GAPDH expression by 70% increased HKII co-precipitation with GLUT4-Myc from L6 cell lysates. GAPDH knockdown had no effect on surface-exposed GLUT4-Myc in basal or insulin-stimulated cells, but markedly and selectively diminished insulin-stimulated 3-O-methyl glucose uptake and GLUT4-Myc photolabelling with ATB-BMPA {2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-yloxy)-2-propylamine}, suggesting that the exofacial glucose-binding site was inaccessible. The results show that GAPDH and HKII reciprocally interact with GLUT4 and suggest that these interactions regulate GLUT4 intrinsic activity in response to insulin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation.

Muscle glucose uptake (MGU) is determined by glucose delivery, transport, and phosphorylation. C57Bl/6J mice overexpressing GLUT4, hexokinase II (HK II), or both were used to determine the barriers to MGU. A carotid artery and jugular vein were catheterized for arterial blood sampling and venous infusions. Experiments were conducted in conscious mice approximately 7 days after surgery. 2-Deoxy-...

متن کامل

Effects of GAPDH, PGK and PGAM on Insulin-Stimulated Glucose Transport in 3T3-L1 Adipocytes

Glucose transporter 4 (GLUT4) moves from perinuclear storage regions to the plasma membrane in response to insulin and facilitates glucose uptake. This MQP examined the roles of three proteins (GAPDH, PGK, and PGAM) in glucose uptake and GLUT4 trafficking in 3T3-L1 adipocytes by performing glucose uptake assays on adipocytes in which these proteins were selectively knocked down using RNAi. GLUT...

متن کامل

Control of exercise-stimulated muscle glucose uptake by GLUT4 is dependent on glucose phosphorylation capacity in the conscious mouse.

Previous work suggests that normal GLUT4 content is sufficient for increases in muscle glucose uptake (MGU) during exercise because GLUT4 overexpression does not increase exercise-stimulated MGU. Instead of glucose transport, glucose phosphorylation is a primary limitation of exercise-stimulated MGU. It was hypothesized that a partial ablation of GLUT4 would not impair exercise-stimulated MGU w...

متن کامل

Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle.

GLUT4 glucose transporter content and glucose transport capacity are closely correlated in skeletal muscle. In this study, we tested the hypothesis that a rapid increase in GLUT4 expression occurs as part of the early adaptive response of muscle to exercise and serves to enhance glycogen storage. Rats exercised by swimming had a approximately 2-fold increase in GLUT4 mRNA and a 50% increase in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 419 2  شماره 

صفحات  -

تاریخ انتشار 2009